Continuous noninvasive monitoring of lung recruitment during high-frequency oscillatory ventilation by electrical impedance measurement: an animal study.

نویسندگان

  • Wolfram Burkhardt
  • Florian Kurth
  • Manuela Pitterle
  • Nicola Blassnig
  • Andreas Wemhöner
  • Mario Rüdiger
چکیده

BACKGROUND Ventilatory pressures should target the range between the upper and lower inflection point of the pressure volume curve in order to avoid atelecto- and volutrauma. During high-frequency oscillatory ventilation (HFOV), this range is difficult to determine. Quadrant impedance measurement (QIM) has recently been shown to allow accurate and precise measurement of lung volume changes during conventional mechanical ventilation. OBJECTIVES To investigate if QIM can be used to determine a static pressure-residual impedance curve during a recruitment-derecruitment manoeuvre on HFOV and to monitor the time course of alveolar recruitment after changing mean airway pressure (MAP). METHODS An incremental and decremental MAP trial (6 cm H2O to 27 cm H2O) was conducted in five surfactant-depleted newborn piglets during HFOV. Ventilatory, gas exchange and haemodynamic parameters were recorded. Continuous measurement of thoracic impedance change was performed. RESULTS Mean residual impedance (RI) increased with each stepwise increase of MAP resulting in a total mean increase of +26.5% (±4.0) at the highest MAP (27 cm H2O) compared to baseline ventilation at 6 cm H2O. Upon decreasing MAP levels, RI fell more slowly compared to its ascent; 83.4% (±19.1) and 84.8% (±16.4) of impedance changes occurred in the first 5 min after an increase or decrease in airway pressure, respectively. CONCLUSIONS QIM could be used for continuous monitoring of thoracic impedance and determination of the pressure-RI curve during HFOV. The method could prove to be a promising bedside method for the monitoring of lung recruitment during HFOV in the future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C Electrical impedance

Current Opinion in Critical Care 2009, 15:18–24 Purpose of review Electrical impedance tomography (EIT) is a noninvasive, radiation-free monitoring tool that allows real-time imaging of ventilation. The purpose of this article is to discuss the fundamentals of EIT and to review the use of EIT in critical care patients. Recent findings In addition to its established role in describing the distri...

متن کامل

Spontaneous breathing during high-frequency oscillatory ventilation improves regional lung characteristics in experimental lung injury.

BACKGROUND Maintenance of spontaneous breathing is advocated in mechanical ventilation. This study evaluates the effect of spontaneous breathing on regional lung characteristics during high-frequency oscillatory (HFO) ventilation in an animal model of mild lung injury. METHODS Lung injury was induced by lavage with normal saline in eight pigs (weight range 47-64 kg). HFO ventilation was appli...

متن کامل

Effect of body position on ventilation distribution during PEEP titration in a porcine model of acute lung injury using advanced respiratory monitoring and electrical impedance tomography

BACKGROUND Lung failure after acute lung injury remains a challenge in different clinical settings. Various interventions for restoration of gas exchange have been investigated. Recruitment of collapsed alveoli by positive end expiratory pressure (PEEP) titration and optimization of ventilation-perfusion ratio by prone positioning have been extensively described in animal and clinical trials. T...

متن کامل

Patient examinations using electrical impedance tomography--sources of interference in the intensive care unit.

Electrical impedance tomography (EIT) is expected to become a valuable tool for monitoring mechanically ventilated patients due to its ability to continuously assess regional lung ventilation and aeration. Several sources of interference with EIT examinations exist in intensive care units (ICU). Our objectives are to demonstrate how some medical nursing and monitoring devices interfere with EIT...

متن کامل

Towards lung EIT image segmentation: automatic classification of lung tissue state from analysis of EIT monitored recruitment manoeuvres.

There is emerging evidence that the ventilation strategy used in acute lung injury (ALI) makes a significant difference in outcome and that an inappropriate ventilation strategy may produce ventilator-associated lung injury. Most harmful during mechanical ventilation are lung overdistension and lung collapse or atelectasis. Electrical impedance tomography (EIT) as a non-invasive imaging technol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neonatology

دوره 103 3  شماره 

صفحات  -

تاریخ انتشار 2013